Volltextsuche

Top Suchbegriffe



Freitag, den 20. März 2015 um 14:55 Uhr

Galaktischer "Raketenantrieb" erklärt ungewöhnliche Sternbewegungen in Galaxien

Eine Entdeckung der MPIA-Doktorandin Athanasia Tsatsi hat das astronomische Verständnis von Galaxienzusammenstößen verändert. Sie erklärt bislang nicht recht verstandene Sternbewegungen in den elliptischen Galaxien, die bei solchen Kollisionen entstehen: Regionen, in denen die Sterne gerade anders herum ums galaktische Zentrum umlaufen als im Rest der Galaxie. Bisherige Erklärungsversuche hatten eine spezielle relative Orientierung ("retrograd") der kollidierenden Galaxien vorausgesetzt. Tsatsi entdeckte eine weitere Möglichkeit, solche "gegenläufigen Zentralregionen" zu erzeugen: Der Massenverlust der beteiligten Galaxien wirkt dabei ähnlich wie eine Art riesiger Raketenantrieb.

In sogenannten elliptischen Galaxien kann es ungewöhnliche Sternbewegungen geben: Während die Sterne in den äußeren Regionen sämtlich in eine Richtung rotieren, kann die gemeinsame Umlaufrichtung der Sterne in der Zentralregion eine ganz andere sein.

Elliptische Galaxien entstehen durch die Kollision und Verschmelzung von zwei (oder mehr) Scheibengalaxien (zu dieser Art gehört auch unsere Heimatgalaxie, die Milchstraße). Bisherige Erklärungsversuche hatten angenommen, dass gegenläufige Zentralregionen entstehen, wenn eine der Vorläufergalaxien eine schwerkraftstarke Zentralregion besitzt, deren Umlaufsinn relativ zur Umlaufbahn der Vorläufergalaxien umeinander gerade die richtige Ausrichtung besitzt. Dieses Erklärungsmodell sagt allerdings eine geringere Anzahl an gegenläufigen Zentralregionen voraus, als tatsächlich beobachtet werden.

Das war die Ausgangssituation, als Athanasia Tsatsi ihre Forschung als Doktorandin am Max-Planck-Institut für Astronomie in Heidelberg begann und dazu Computersimulationen von Galaxienzusammenstößen auswertete. Tsatsis Ziel war eigentlich, herauszufinden, wie die entstehenden Galaxien durch verschiedene Arten astronomischer Beobachtungsinstrumente aussehen würden. Stattdessen machte sie beim Blick durch solch ein „virtuelles Beobachtungsinstrument“ eine unerwartete Entdeckung: Die Galaxie, die bei der simulierten Verschmelzung entstand, wies eine gegenläufige Zentralregion auf. Aber die Vorläufergalaxien wiesen nicht die spezielle Orientierung auf, die dem herkömmlichen Erklärungsversuch zufolge Voraussetzung für die Entstehung der Gegenläufigkeit sein sollte!

Das Ergebnis der simulierten Verschmelzung passte zu dem, was aus Beobachtungen bereits über solche gegenläufigen Zentralregionen bekannt war. Die resultierende elliptische Galaxie war mit 130 Milliarden Sonnenmassen eine der massereicheren Vertreterinnen ihrer Gattung; gerade bei massereichen elliptischen Galaxien sind gegenläufige Zentralregionen besonders häufig. Die Gegenläufigkeit bleibt in der Simulation für rund 2 Milliarden Jahre nach der Verschmelzung nachweisbar; langfristig genug, dass man erwarten kann, bei tatsächlichen Beobachtungen vieler Galaxien Beispiele dafür zu finden. Nicht zuletzt handelt es sich in der Simulation bei den Gegenläufern um ältere Sterne, die bereits lange vor der Verschmelzung entstanden waren; auch das entspricht den tatsächlichen Beobachtungen.

Tsatsis Entdeckung betrifft zunächst einmal einen Einzelfall. Aber das genügt für den Nachweis, dass gegenrotierende Zentralregionen auf diese Weise entstehen können. Als nächstes müssen die Astronomen herausfinden, wie häufig Entstehungsprozesse dieser Art sind – indem sie Galaxienverschmelzungen mit den unterschiedlichsten Anfangsbedingungen untersuchen. Wenn solche systematischen Tests zeigen, dass der Mestschersky-Mechanismus für die Entstehung gegenläufiger Zentralregionen häufig genug in Erscheinung tritt, könnte dies die Beobachtete Häufigkeit des Phänomens erklären. Aber bereits jetzt hat die Entdeckung von Tsatsi den Blickwinkel der Astronomen auf gegenläufige Zentralregionen und galaktische Verschmelzungen verändert: Spezielle Konfigurationen der Drehsinne und der gegenseitigen Umlaufbahn verschmelzender Galaxien sind nicht die einzige Möglichkeit, Gegenläufigkeit zu erzeugen. „Galaktische Raketenantriebe“ leisten ebenso gute Dienste.


Den Artikel finden Sie unter:

http://www.mpia.de/news/wissenschaft/2015-04-galaktischer-raketenantrieb

Quelle: Max-Planck-Institut für Astronomie (03/2015)

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.