Volltextsuche

Top Suchbegriffe



Donnerstag, den 20. Februar 2014 um 06:26 Uhr

Nature: kleinster elektrooptischer Wandler der Welt

Dank optischer Signale laufen Daten schnell um den Erdball. Aber auch zwischen elektronischen Chips könnten digitale Informationen optisch schneller und energieeffizienter ausgetauscht werden. Dazu bedarf es jedoch einfacher Methoden, um von elektrischen zu optischen Signalen zu wechseln. Im Fachmagazin Nature Photonics wurde nun ein Bauteil vorgestellt, das nur 29 Mikrometer lang ist und mit einer Rate von rund 40 Gigabit pro Sekunde Signale umwandelt. Damit ist er der kompakteste Hochgeschwindigkeits-Phasenmodulator der Welt. DOI: 10.1038/NPHOTON.2014.9

„Der Übergang vom elektrischen zum optischen Signal passiert immer näher am Prozessor“, sagt Jürg Leuthold, der die aktuelle Entwicklung am Karlsruher Institut für Technologie betreut hat und inzwischen an der ETH Zürich forscht. „Dadurch lassen sich Geschwindigkeitsvorteile erzielen, aber vor allem Leitungsverluste vermeiden. Dies wäre ein wichtiger Baustein, um den Energiebedarf der wachsenden Informationstechnologie zu dämpfen.“

Der elektrooptische Wandler besteht aus zwei parallelen Goldelektroden, die etwa 29 Mikrometer lang sind und durch einen etwa einen zehntel Mikrometer breiten Spalt getrennt sind. Der Aufbau ist also etwa so lang wie ein Drittel eines Haares breit ist und belegt Bruchteile der Querschnittsfläche eines Haares. An den Elektroden liegt eine Spannung an, die im Takt der digitalen Daten moduliert wird. Der Spalt ist mit einem elektro-optischen Kunststoff gefüllt, dessen Brechungsindex sich in Abhängigkeit von der Spannung verändert. Zwei Wellenleiter aus Silizium führen das Licht zum Spalt bzw. von ihm weg. „Ein kontinuierlicher Lichtstrahl aus dem Leiter regt im Spalt elektromagnetische Oberflächenwellen, sogenannte Oberflächen-Plasmonen an“, erklärt Argishti Melikyan vom KIT, Erstautor der Veröffentlichung. „Durch die am Kunststoff anliegende Spannung werden die Oberflächenwellen moduliert. Nach Durchlaufen des Spalts treten diese als modulierter Lichtstrahl in den abführenden Lichtwellenleiter ein. In der Phase des Lichts sind dann die Datenbits codiert.“

In zahlreichen Tests wurde gezeigt, dass der elektrooptische Wandler verlässlich Datenströme mit rund 40 Gigabit pro Sekunde umsetzt. Er nutzt das auch im Breitbandglasfasernetz übliche Infrarotlicht mit der Wellenlänge von 1480-1600 Nanometer und zeigt auch bei Temperaturen bis 85 Grad Celsius keine Betriebsabweichung. Der vorgestellte Wandler ist der kleinste und kompakteste Hochgeschwindigkeits-Phasenmodulator der Welt. Zudem lässt er sich mit weitverbreiteten CMOS-Verfahren aus der Mikroelektronik herstellen und damit leicht in aktuelle Chiparchitekturen integrieren. „Das Bauteil vereint viele positive Eigenschaften anderer Systeme, wie etwa eine hohe Modulationsgeschwindindigkeit, Kompaktheit und Energieeffizienz. Zukünftig könnten plasmonische Bauteile zur Signalverarbeitung im Terahertz-Bereich verwendet werden“, sagt Christian Koos vom Karlsruher Institut für Technologie, Sprecher der Helmholtz International Research School of Teratronics (HIRST), die sich am KIT mit der Fusion photonischer und elektronischer Verfahren zur ultraschnellen Signalverarbeitung befasst. „Plasmonische Wandler würden zu Hunderten auf einen Chip passen und Datenraten von einigen Terabit pro Sekunde ermöglichen.“

Derzeit werden in Deutschland rund 10 Prozent des Stromes durch Informations- und Kommunikationstechnologien verbraucht, etwa durch Computer und Smartphones beim Nutzer, aber auch durch die Server in großen Rechenzentren. Da der Datenverkehr exponentiell anwächst, bedarf es neuer Ansätze, die den Durchsatz steigern und gleichzeitig den Energieverbrauch dämpfen. Plasmonische Bauteile könnten hier einen entscheidenden Beitrag liefern.


Den Artikel finden Sie unter:

http://www.kit.edu/besuchen/pi_2014_14701.php

Quelle: Karlsruher Institut für Technologie (02/2014)


Publikation:
High-speed plasmonic phase modulators, A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude and J. Leuthold, nature photonics AOP, DOI: 10.1038/NPHOTON.2014.9

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.